A Self-Organizing Network
نویسندگان
چکیده
Science for the challenges of society. A substantial number of studies have extended the work on universal properties in physical systems to complex networks in social, biological, and technological systems. In this paper, we present a complex networks perspective on interfirm organizational networks by mapping, analyzing and modeling the spatial structure of a large inter-firm competition network across a variety of sectors and industries within the United States. We propose a model that is able to reproduce experimentally observed characteristics of competition networks as a natural outcome of a minimal set of general mechanisms governing the evolution of competition networks. The model suggests that macro dynamical processes determine to a large extent the ecology of industry structure. There is an asymmetry between companies that are considered competitors , and companies that consider others as their competitors. All companies only consider a small number of other companies as competitors, however there are a few companies that are considered as competitors by many others. Geographically, the density of corporate headquarters strongly correlates with local population density, and the probability two firms are competitors declines with geographic distance. We construct these properties by growing a corporate network with competitive links using random incorporations modulated by population density and geographic distance. Despite randomness, the historical order of incorporation matters to network structure. Our new analysis, methodology and empirical results are relevant to various phenomena of organizational behavior, and have implications to research fields such as economic geography, economic sociology, and regional economic development.
منابع مشابه
A Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملA Method for Body Fat Composition Analysis in Abdominal Magnetic Resonance Images Via Self-Organizing Map Neural Network
Introduction: The present study aimed to suggest an unsupervised method for the segmentation of visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) in axial magnetic resonance (MR) images of the abdomen. Materials and Methods: A self-organizing map (SOM) neural network was designed to segment the adipose tissue from other tissues in the MR images. The segmentation of SAT and VA...
متن کاملUncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm
Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...
متن کاملKohonen Self Organizing for Automatic Identification of Cartographic Objects
Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کامل